1,850 research outputs found

    Computing Fractional Flow Reserve From Invasive Coronary Angiography Getting Closer

    Get PDF

    A neural network approach for determining spatial and geometry dependent Green's functions for thermal stress approximation in power plant header components

    Get PDF
    The trend in power generation to operate plant with a greater frequency of on/partial/off load conditions creates several concerns for the long term structural integrity of many high temperature components. The Green's function method has been used for many years to estimate the thermal stresses in components such as steam headers by attempting to solve the un-coupled thermal stress problem for a unit temperature step. Once a Green's function for a unit temperature step has been determined, realistic or actual component temperature profiles can be discretised and the time dependent stress profile reconstructed using Duhamel's theorem. Stress fluctuations can therefore be estimated and damage due to fatigue mechanisms can be quantified. A potential difficulty with this method is that Green's function approximations are determined for a single analysis point in a structure. This is because Green's functions are approximated by fitting a trial function to the results of finite element (FE) simulations. While a user can make some judgement on which point in a structure will give the “worst case” (or life limiting) conditions, it is foreseeable that points of interest will be dependent on the specific analysis conditions, such as the stub penetration geometry and the loading condition considered. The neural network approach described in this paper provides a means where transient thermal stress models of complex components (here taken to be steam headers) can be generated relatively quickly and used pro-actively to assess and modify plant operation. A range of header geometries have been considered to make the network applicable over an industry relevant envelope. Coefficients of determination (R2) are typically above 0.92 when reconstructed (from neural network results) unit temperature step stress profiles are compared against “true” FEA results. Mean errors in the stress profiles are, for the majority of cases, less than 10%. Suggestions are also made on possible future improvements to the method through the use of additional constraints on the reconstructed stress profiles

    Isotope effects and possible pairing mechanism in optimally doped cuprate superconductors

    Full text link
    We have studied the oxygen-isotope effects on T_{c} and in-plane penetration depth \lambda_{ab}(0) in an optimally doped 3-layer cuprate Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10+y} (T_{c} \sim 107 K). We find a small oxygen-isotope effect on T_{c} (\alpha_{O} = 0.019), and a substantial effect on \lambda_{ab} (0) (\Delta \lambda_{ab} (0)/\lambda_{ab} (0) = 2.5\pm0.5%). The present results along with the previously observed isotope effects in single-layer and double-layer cuprates indicate that the isotope exponent \alpha_{O} in optimally doped cuprates is small while the isotope effect on the in-plane effective supercarrier mass is substantial and nearly independent of the number of the CuO_{2} layers. A plausible pairing mechanism is proposed to explain the isotope effects, high-T_{c} superconductivity and tunneling spectra in a consistent way.Comment: 5 pages, 4 figure

    Virtual Coronary Intervention: A Treatment Planning Tool Based Upon the Angiogram

    Get PDF
    Objectives: This study sought to assess the ability of a novel virtual coronary intervention (VCI) tool based on invasive angiography to predict the patient's physiological response to stenting. Background: Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) is associated with improved clinical and economic outcomes compared with angiographic guidance alone. Virtual (v)FFR can be calculated based upon a 3-dimensional (3D) reconstruction of the coronary anatomy from the angiogram, using computational fluid dynamics (CFD) modeling. This technology can be used to perform virtual stenting, with a predicted post-PCI FFR, and the prospect of optimized treatment planning. Methods: Patients undergoing elective PCI had pressure-wire-based FFR measurements pre- and post-PCI. A 3D reconstruction of the diseased artery was generated from the angiogram and imported into the VIRTUheart workflow, without the need for any invasive physiological measurements. VCI was performed using a radius correction tool replicating the dimensions of the stent deployed during PCI. Virtual FFR (vFFR) was calculated pre- and post-VCI, using CFD analysis. vFFR pre- and post-VCI were compared with measured (m)FFR pre- and post-PCI, respectively. Results: Fifty-four patients and 59 vessels underwent PCI. The mFFR and vFFR pre-PCI were 0.66 ± 0.14 and 0.68 ± 0.13, respectively. Pre-PCI vFFR deviated from mFFR by ±0.05 (mean Δ = -0.02; SD = 0.07). The mean mFFR and vFFR post-PCI/VCI were 0.90 ± 0.05 and 0.92 ± 0.05, respectively. Post-VCI vFFR deviated from post-PCI mFFR by ±0.02 (mean Δ = -0.01; SD = 0.03). Mean CFD processing time was 95 s per case. Conclusions: The authors have developed a novel VCI tool, based upon the angiogram, that predicts the physiological response to stenting with a high degree of accuracy

    The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians

    No full text
    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms' thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shift

    When is rotational angiography superior to conventional single-plane angiography for planning coronary angioplasty?

    Get PDF
    Objectives: To investigate the value of rotational coronary angiography (RoCA) in the context of percutaneous coronary intervention (PCI) planning. Background: As a diagnostic tool, RoCA is associated with decreased patient irradiation and contrast use compared with conventional coronary angiography (CA) and provides superior appreciation of three-dimensional anatomy. However, its value in PCI remains unknown. Methods: We studied stable coronary artery disease assessment and PCI planning by interventional cardiologists. Patients underwent either RoCA or conventional CA pre-PCI for planning. These were compared with the referral CA (all conventional) in terms of quantitative lesion assessment and operator confidence. An independent panel reanalyzed all parameters. Results: Six operators performed 127 procedures (60 RoCA, 60 conventional CA, and 7 crossed-over) and assessed 212 lesions. RoCA was associated with a reduction in the number of lesions judged to involve a bifurcation (23 vs. 30 lesions, P < 0.05) and a reduction in the assessment of vessel caliber (2.8 vs. 3.0 mm, P < 0.05). RoCA improved confidence assessing lesion length (P = 0.01), percentage stenosis (P = 0.02), tortuosity (P < 0.04), and proximity to a bifurcation (P = 0.03), particularly in left coronary artery cases. X-ray dose, contrast agent volume, and procedure duration were not significantly different. Conclusions: Compared with conventional CA, RoCA augments quantitative lesion assessment, enhances confidence in the assessment of coronary artery disease and the precise details of the proposed procedure, but does not affect X-ray dose, contrast agent volume, or procedure duration. © 2015 Wiley Periodicals, Inc

    Universality and the Renormalisation Group

    Get PDF
    Several functional renormalisation group (RG) equations including Polchinski flows and Exact RG flows are compared from a conceptual point of view and in given truncations. Similarities and differences are highlighted with special emphasis on stability properties. The main observations are worked out at the example of O(N) symmetric scalar field theories where the flows, universal critical exponents and scaling potentials are compared within a derivative expansion. To leading order, it is established that Polchinski flows and ERG flows - despite their inequivalent derivative expansions - have identical universal content, if the ERG flow is amended by an adequate optimisation. The results are also evaluated in the light of stability and minimum sensitivity considerations. Extensions to higher order and further implications are emphasized.Comment: 15 pages, 2 figures; paragraph after (19), figure 2, and references adde
    corecore